Solving the inverse problem of noise-driven dynamic networks.
نویسندگان
چکیده
Nowadays, massive amounts of data are available for analysis in natural and social systems and the tasks to depict system structures from the data, i.e., the inverse problems, become one of the central issues in wide interdisciplinary fields. In this paper, we study the inverse problem of dynamic complex networks driven by white noise. A simple and universal inference formula of double correlation matrices and noise-decorrelation (DCMND) method is derived analytically, and numerical simulations confirm that the DCMND method can accurately depict both network structures and noise correlations by using available output data only. This inference performance has never been regarded possible by theoretical derivation, numerical computation, and experimental design.
منابع مشابه
Inverse Maximum Dynamic Flow Problem under the Sum-Type Weighted Hamming Distance
Inverse maximum flow (IMDF), is among the most important problems in the field ofdynamic network flow, which has been considered the Euclidean norms measure in previousresearches. However, recent studies have mainly focused on the inverse problems under theHamming distance measure due to their practical and important applications. In this paper,we studies a general approach for handling the inv...
متن کاملCapacity Inverse Minimum Cost Flow Problem under the Weighted Hamming Distances
Given an instance of the minimum cost flow problem, a version of the corresponding inverse problem, called the capacity inverse problem, is to modify the upper and lower bounds on arc flows as little as possible so that a given feasible flow becomes optimal to the modified minimum cost flow problem. The modifications can be measured by different distances. In this article, we consider the capac...
متن کاملImplementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary condition
The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...
متن کاملESTIMATION OF INVERSE DYNAMIC BEHAVIOR OF MR DAMPERS USING ARTIFICIAL AND FUZZY-BASED NEURAL NETWORKS
In this paper the performance of Artificial Neural Networks (ANNs) and Adaptive Neuro- Fuzzy Inference Systems (ANFIS) in simulating the inverse dynamic behavior of Magneto- Rheological (MR) dampers is investigated. MR dampers are one of the most applicable methods in semi active control of seismic response of structures. Various mathematical models are introduced to simulate the dynamic behavi...
متن کاملStructure Determination of a Criterion Function by Dynamic Inverse Optimization
In this paper, we propose a novel approach to dynamic inverse optimization by the learning of neural networks. A dynamic inverse optimization problem here means to estimate a criterion function under which given input and output sequences become optimal for a known state equation model. A neural network architecture representing the optimality condition including an algebraic Riccati equation i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 91 1 شماره
صفحات -
تاریخ انتشار 2015