Solving the inverse problem of noise-driven dynamic networks.

نویسندگان

  • Zhaoyang Zhang
  • Zhigang Zheng
  • Haijing Niu
  • Yuanyuan Mi
  • Si Wu
  • Gang Hu
چکیده

Nowadays, massive amounts of data are available for analysis in natural and social systems and the tasks to depict system structures from the data, i.e., the inverse problems, become one of the central issues in wide interdisciplinary fields. In this paper, we study the inverse problem of dynamic complex networks driven by white noise. A simple and universal inference formula of double correlation matrices and noise-decorrelation (DCMND) method is derived analytically, and numerical simulations confirm that the DCMND method can accurately depict both network structures and noise correlations by using available output data only. This inference performance has never been regarded possible by theoretical derivation, numerical computation, and experimental design.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Maximum Dynamic Flow Problem under the Sum-Type Weighted Hamming Distance

Inverse maximum flow (IMDF), is among the most important problems in the field ofdynamic network flow, which has been considered the Euclidean norms measure in previousresearches. However, recent studies have mainly focused on the inverse problems under theHamming distance measure due to their practical and important applications. In this paper,we studies a general approach for handling the inv...

متن کامل

Capacity Inverse Minimum Cost Flow Problem under the Weighted Hamming Distances

Given an instance of the minimum cost flow problem, a version of the corresponding inverse problem, called the capacity inverse problem, is to modify the upper and lower bounds on arc flows as little as possible so that a given feasible flow becomes optimal to the modified minimum cost flow problem. The modifications can be measured by different distances. In this article, we consider the capac...

متن کامل

Implementation of Sinc-Galerkin on Parabolic Inverse problem with unknown boundary ‎condition‎

The determination of an unknown boundary condition, in a nonlinaer inverse diffusion problem is considered. For solving these ill-posed inverse problems, Galerkin method based on Sinc basis functions for space and time will be used. To solve the system of linear equation, a noise is imposed and Tikhonove regularization is applied. By using a sensor located at a point in the domain of $x$, say $...

متن کامل

ESTIMATION OF INVERSE DYNAMIC BEHAVIOR OF MR DAMPERS USING ARTIFICIAL AND FUZZY-BASED NEURAL NETWORKS

In this paper the performance of Artificial Neural Networks (ANNs) and Adaptive Neuro- Fuzzy Inference Systems (ANFIS) in simulating the inverse dynamic behavior of Magneto- Rheological (MR) dampers is investigated. MR dampers are one of the most applicable methods in semi active control of seismic response of structures. Various mathematical models are introduced to simulate the dynamic behavi...

متن کامل

Structure Determination of a Criterion Function by Dynamic Inverse Optimization

In this paper, we propose a novel approach to dynamic inverse optimization by the learning of neural networks. A dynamic inverse optimization problem here means to estimate a criterion function under which given input and output sequences become optimal for a known state equation model. A neural network architecture representing the optimality condition including an algebraic Riccati equation i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 91 1  شماره 

صفحات  -

تاریخ انتشار 2015